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Abstract: In the robust performance analysis of a given controller, the choice for an appropriate model uncertainty structure
is important. From an identification experiment the measurement data is typically mapped into an uncertainty set that is
represented in a particular structure e.g., norm-bounded additive perturbation.Amongst such a variety of possible uncertainty
structures an ultimate question to be answered would be what is, for a given purpose (robust stability/performance analysis),
the best model uncertainty structure in which to identify the model set (nominal model and uncertainty bound). And
consequently, what would be the best experiment allowing for minimization of the uncertainty. In this paper the analysis of
the robust adaptive systems identification algorithms has been carried out in the presence of additive noise and magnitude
bounded perturbations.
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INTRODUCTION

Fundamental connections between adaptive filtering,
identification, and control have been widely acknowledged
since their inception in the late 1960s and consequently the
adaptive systems identification has been an active area of
research [1]. In this paper, we only consider the linear
adaptive ARMA system identification [2, 3]. Fundamentally
there have been two approaches to adaptive filtering that
correspond to different formulations of the prediction error;
these are known as equation error and output error methods.
It is well known fact that when data is contaminated by
Gaussian noise conventional linear systems may perform
poorly. The linear filter or linear smoothing has no robustness
to wild-points assisted in the additive noise, for the purpose
of robustness of adaptive system identification; the nonlinear
M-estimate should be used in data processing [4].

In this paper, adaptive ARMA system identification is
realized by the adaptive output error algorithm [5] that is
given in Section 2. The choice for an appropriate model
uncertainty structure is important in the robustness analysis.
An amplitude-bounded (circular) uncertainty set can
equivalently be described in terms of an additive, Youla
parameter and γ-gap uncertainty [6]. A brief introduction to
various uncertainty structures is given in Section 3. In
Section 4, results obtained by adaptive output error
algorithm by using median smoothing for identification of
a nominal model and for a nominal model with amplitude
bounded additive uncertainty are presented followed by
conclusions in Section 5.

ROBUST ADAPTIVE OUTPUT ERROR SYSTEM
IDENTIFICATION ALGORITHM

In general, the adaptive ARMA system identification
includes equation error and output error algorithm. In this
section, we will discuss the robust adaptive output error
ARMA system identification algorithm [2].

A single input and single output ARMA system can be
written as

A(q)d′(t) = B(q)u(t)
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d(t) = d′(t) + n(t)

Where d(t), u(t) are the output and input respectively,
n(t) denotes the additive noise.

Considering the ARMA system (1) its predictor is of
the form,
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Considering the output error:

e(t) = d(t) – y(t) = H
1
(q)[D′T(t)ω(t)] + n(t – 1)

Where 1
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 and

D′(t) = [d′(t), ....., d′(t – N), u(t), ....., u(t – M + 1)]T

By using the output error e(t), the robust adaptive output
error ARMA system identification algorithm is derived as:*Corresponding Author: mangaldalvinder@yahoomail.com
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With 1( ) ( ) ( )x x xG s N s D s−=  a nominal model, C(s) =
1( ) ( )x xN s D s−  a present controller and Q

s
, Q

c
(s) stable and

stably invertible weighting functions reflecting the freedom
in choosing the Co-prime factorization of G

x
(s) and C(s)

[6]. An additional weighting can be provided by W
Y
(s). The

Youla parameter ∆
G
(s) is uniquely determined by:
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g-gap uncertainty:
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(7)

With k(G∆,G
x
) the chordal distance between a plant

G∆(s) = 1( ) ( )N s D s−
∆ ∆  and the nominal model G

x
(s) =

1( ) ( )x xN s D s− , defined by
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At this point pole/zero conditions are not yet imposed
on G∆(s), G

x
(s), ∆(s), P(s) or W(s) as required when studying

robust stability conditions [9, 10]. The focus lies here with
the properties of the frequency responses of the sets.

Case Study

A) The robust adaptive output error ARMA system
identification (3a)-(3f) is used in the following
simulation [11]. Its parameter estimate will be compared
with that the conventional adaptive output error
algorithm without median smoothing, The ARMA
system used in the simulation is of the form,

A(q) = 1 + .3q–1–.4q–2

B(q) = 1 – 1.4q–1

The additive noise n(t) takes the following form:

1

2

( ), 0.9;
( )

( ) .

n t if a
n t

n t otherwise

≥
= 


Where n

1
(t) the Gaussian is white noise with variance

0.01, and n
2
(t) is also the white noise with variance 1. a

is a random, its distribution is uniform within [0,1].

Compared with the conventional adaptive algorithm,
the robust adaptive algorithm is much robust to wild
points; its robust performance is improved, greatly.

2ˆ ˆ( ) ( 1) ( ) ( ) ( )[ ( )]rt t R t e t H q D tω = ω − + (3a)

( ) ( ) ( )re t d t y t= − (3b)

( ) ( ) ( )rd t R t d t= (3c)

ˆ ˆ( ) ( ) ( ) ( )A q y t B q u t= (3d)
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Where R(t) is the median smoothing influence function
which cancel the influence of wild-points in n(t).

1, ( ) ( ) ;

( )
, .

( )

mif d t d t T

R t K
otherwise

d t

 − ≤
= 



(3f)

( ) [ ( 1),....., ( )]md t median d t d t L= − −
T is the threshold, selected as:

(3 ~ 5) [ ( ) ( ) ,......, ( ) ( ) ]m mT median d t d t d t L d t= − − −

From the adaptive algorithm (3a)–3(f), The estimate
3(d) of ARMA system is a recursive form, thus, the system
may be unstable unless the roots of ˆ( ) 0A q =  lie inside unit
circle during the adaption. The wild-points existed in d(t)
may influence the parameter estimate ˆ ( )tω , greatly, and
make the adaptive algorithm divergence, if d(t) is not
prefiltered by the median smoothing. Hence, it is significant
to cancel the influence of wild-points using median
smoothing to keep the adaptive algorithm stability. If R(t)
takes the form of (3f), it is obvious that the ARMA system
output d(t) contaminated by the wild-points is prefiltered
[7, 8] or smoothed through the nonlinear median smoothing,
the influence by the wild-points is cancelled.

Framework for Uncertainties

Considering single-input–single-output linear time invariant
finite-dimensional systems G(s) and controllers C(s). Co-
prime factorizations of plants and controllers are defined as
G(s)=N(s)D–1(s) and C(s) = N

c
(SD

c
–1(s)) where N(s), D(s),

N
c
,D

c
∈� H∞

 
satisfy the usual conditions [6, 9]. The

factorizations are normalized, denoted by (.) , if they
additionally satisfy ( ) ( ) ( ) 1,N s N s D s∗ + =  where (.)*
denotes complex conjugate transpose. This paper considers
three model sets based on a specific uncertainty structure.

Additive Uncertainty:

( , ) : { ( ) | ( ) ( ) ( ),| ( ) | },a x a x a ag G W G s G s G s s i∆ ∆= = + ∆ ∆ ω ∀ω∈�

(5)
With G

x
(s) is a nominal model and W

a
(s) a weighting

function.
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With ( ) 1Hxz∆ ≤
It is seen that convergence is obtained with additive
uncertainty in the plant.

C) Again the simulation results are obtained for amplitude
bounded youla uncertainty model structure and the
model taken is of the form similar to that used in [12]

With ( ) .968Hxz∆ =
It is seen that convergence is again obtained with youla

uncertainty in the plant.

CONCLUSION

In this paper, a robust adaptive system identification
algorithm which has great robustness to wild-points have
been analyzed. The amplitude bounded non-parametric
uncertainties are accounted for by including a model of the
uncertainty in the identifier. It is seen that when uncertainty
is incorporated in the plant model, the convergence rate of
parameters is observed. Further work can be carried out by
describing uncertainty set in terms of γ-gap.
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B) Now the simulation results are obtained for amplitude
bounded additive uncertainty model structure and the
model now taken is of the form similar to that used in [12]
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Figure 1: The Parameter Estimate in the presence of Noise
without Upper Bound.

Figure 2: The Parameter Estimate in the presence of Noise with
Additive Uncertainty
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Figure 3: The Parameter Estimate in the presence of Noise with
Youla Uncertainty


